
♥ Grav? Help us out by supporting Grav on

TOUR FEATURES BLOG DOWNLOADS

ABOUT FORUM LEARN

5,329 9,426 2,226

" # $ %

∠ ∠ ∠ ∠

[Updated 4/6/2018] Due to Homebrew/php tap

being deprecated at the end of March 2018, and the
moving of all PHP formulas to Homebrew/core ,

we've reworked our Guide to work with this new tap.

* Warning

If you have followed this guide in the past with the

* Info

macOS 10.13 High
Sierra Apache Setup:
Multiple PHP Versions
First part in a multi-part blog series for Mac

developers

 Andy Miller posted on 04/07/2018 in macos +

sierra + apache + homebrew + php + 14 mins

https://opencollective.com/grav#support
https://getgrav.org/
https://getgrav.org/features
https://getgrav.org/blog
https://getgrav.org/downloads
https://getgrav.org/about
https://discourse.getgrav.org/
https://learn.getgrav.org/
http://twitter.com/getgrav
https://github.com/getgrav/grav
https://chat.getgrav.org/
https://getgrav.org/blog.atom
https://getgrav.org/blog/grav-1.5-released
https://getgrav.org/blog/macos-sierra-apache-mysql-vhost-apc
https://getgrav.org/blog/rockettheme-spring-sale-2018
https://getgrav.org/blog/grav-beta-released
https://github.com/Homebrew/homebrew-php/issues/4721
https://twitter.com/rhuk
https://getgrav.org/blog/tag:macos
https://getgrav.org/blog/tag:sierra
https://getgrav.org/blog/tag:apache
https://getgrav.org/blog/tag:homebrew
https://getgrav.org/blog/tag:php

Part 1: macOS 10.13 High Sierra Web Development Environment

Developing web applications on macOS is a real joy. There
are plenty of options for setting up your development
environments, including the ever-popular MAMP Pro that
provides a nice UI on top of Apache, PHP and MySQL.
However, there are times when MAMP Pro has slow downs,
or out of date versions, or is simply behaving badly due to
its restrictive system of configuration templates and non-
standard builds.

It is times like these that people often look for an
alternative approach, and luckily there is one, and it is
relatively straight-forward to setup.

In this blog post, we will walk you through setting up and
configuring Apache 2.4 and multiple PHP versions. In the

Homebrew/php tap, and are looking to upgrade

to the new Homebrew/core approach, then you

should first clean-up your current installation by
following our new Upgrading Homebrew.

This is an updated version of our prior OS X
development series. The newly released macOS 10.13
High Sierra and the accompanying updates to Brew
require significant changes compared to prior releases,
necessitating a thorough revamp in the process. Since
macOS 10.12 we now use Homebrew's Apache, rather
than the built-in version, but this new appraoch is
more flexible and should continue to work on prior OS
X versions.

* Note

http://www.mamp.info/en/mamp-pro/
https://getgrav.org/blog/macos-sierra-apache-upgrade-homebrew

second blog post in this two-post series, we will cover
MySQL, Apache virtual hosts, APC caching, and Xdebug
installation.

XCode Command Line
Tools
If you don't already have XCode installed, it's best to first
install the command line tools as these will be used by
homebrew:

Homebrew Installation
This process relies heavily on the macOS package
manager called Homebrew. Using the brew

command you can easily add powerful functionality to
your mac, but first we have to install it. This is a simple
process, but you need to launch your Terminal
(/Applications/Utilities/Terminal) application

and then enter:

This guide is intended for experienced web
developers. If you are a beginner developer, you will be
better served using MAMP or MAMP Pro.

* Tip

$ xcode-select --install

http://www.mamp.info/en/mamp-pro/

Just follow the terminal prompts and enter your password
where required. This may take a few minutes, but when
complete, a quick way to ensure you have installed brew

 correctly, simply type:

You should probably also run the following command to
ensure everything is configured correctly:

It will instruct you if you need to correct anything.

Apache Installation
The latest macOS 10.13 High Sierra comes with Apache
2.4 pre-installed, however, it is no longer a simple task to
use this version with Homebrew because Apple has
removed some required scripts in this release. However,
the solution is to install Apache 2.4 via Homebrew and
then configure it to run on the standard ports (80/443).

If you already have the built-in Apache running, it will need
to be shutdown first, and any auto-loading scripts

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)

$ brew --version
Homebrew 1.5.14
Homebrew/homebrew-core (git revision beff; last commit 2018-04-06)

$ brew doctor

removed. It really doesn't hurt to just run all these
commands in order - even if it's a fresh installation:

Now we need to install the new version provided by Brew:

Without options, httpd won't need to be built from source,
so it installs pretty quickly. Upon completion you should
see a message like:

Now we just need to configure things so that our new
Apache server is auto-started

You now have installed Homebrew's Apache, and
configured it to auto-start with a privileged account. It
should already be running, so you can try to reach your
server in a browser by pointing it at
http://localhost:8080 , you should see a simple

header that says "It works!".

$ sudo apachectl stop
$ sudo launchctl unload -w /System/Library/LaunchDaemons/org.apache.httpd.plist 2>/dev/null

$ brew install httpd

🍺

 /usr/local/Cellar/httpd/2.4.33: 1,633 files, 26.4MB

$ sudo brew services start httpd

Troubleshooting Tips

If you get a message that the browser can't connect to the
server, first check to ensure the server is up.

You should see a few httpd processes if Apache is up and
running.

Try to restart Apache with:

You can watch the Apache error log in a new Terminal
tab/window during a restart to see if anything is invalid or
causing a problem:

$ ps -aef | grep httpd

$ sudo apachectl -k restart

Apache is controlled via the apachectl command

so some useful commands to use are:

Apache Configuration

Now that we have a working web server, we will want to
do is make some configuration changes so it works better
as a local development server.

In the latest version of Brew, you have to manually set the
listen port from the default of 8080 to 80 , so

we will need to edit Apache's configuration file.

For simplicity we'll use the built-in TextEditor application
to make all our edits. You can launch this from the
Terminal by using the open -e command followed

$ tail -f /usr/local/var/log/httpd/error_log

$ sudo apachectl start
$ sudo apachectl stop
$ sudo apachectl -k restart

The -k will force a restart immediately rather

than asking politely to restart when apache is good
and ready

* Info

/usr/local/etc/httpd/httpd.conf

by the path to the file:

Find the line that says

and change it to 80 :

Next we'll configure it to use the to change the document
root for Apache. This is the folder where Apache looks to
serve file from. By default, the document root is
configured as /usr/local/var/www . As this is a

$ open -e /usr/local/etc/httpd/httpd.conf

Listen 8080

Listen 80

development machine, let's assume we want to change
the document root to point to a folder in our own home
directory.

Search for the term DocumentRoot , and you should

see the following line:

Change this to point to your user directory where
your_user is the name of your user account:

You also need to change the <Directory> tag

reference right below the DocumentRoot line. This should
also be changed to point to your new document root also:

DocumentRoot "/usr/local/var/www"

DocumentRoot /Users/your_user/Sites

<Directory /Users/your_user/Sites>

We removed the optional quotes around the directory
paths as TextEdit will probably try to convert those to
smart-quotes and that will result in a Syntax error
when you try to restart Apache. Even if you edit around
the quotes and leave them where they are, saving the
document may result in their conversion and cause an
error.

* Note

In that same <Directory> block you will find an

AllowOverride setting, this should be changed as

follows:

Also we should now enable mod_rewrite which is
commented out by default. Search for mod_rewrite.so

 and uncomment the line by removing the leading

:

User & Group

Now we have the Apache configuration pointing to a
Sites folder in our home directory. One problem

still exists, however. By default, apache runs as the user
daemon and group daemon . This will cause

permission problems when trying to access files in our
home directory. About a third of the way down the
httpd.conf file there are two settings to set the

User and Group Apache will run under.

Change these to match your user account (replace
your_user with your real username), with a group

of staff :

AllowOverride controls what directives may be placed
It can be "All", "None", or any combination of the keywords:
AllowOverride FileInfo AuthConfig Limit
#
AllowOverride All

LoadModule rewrite_module lib/httpd/modules/mod_rewrite.so

Servername

Apache likes to have a server name in the configuration,
but this is disabled by default, so search for:

and replace it with:

Sites Folder

Now, you need to create a Sites folder in the root

of your home directory. You can do this in your terminal, or
in Finder. In this new Sites folder create a simple

index.html and put some dummy content in it

like: <h1>My User Web Root</h1> .

Restart apache to ensure your configuration changes have
taken effect:

User your_user
Group staff

#ServerName www.example.com:8080

ServerName localhost

$ mkdir ~/Sites
$ echo "<h1>My User Web Root</h1>" > ~/Sites/index.html

Pointing your browser to http://localhost should

display your new message. If you have that working, we
can move on!

PHP Installation

$ sudo apachectl -k restart

If you receive an error upon restarting Apache, try
removing the quotes around the DocumentRoot and
Directory designations we set up earlier.

* Note

If you have existing PHP installations via Brew, you
need to first cleanup your setup with our Upgrading
Homebrew guide before continuing with this section.

* Warning

https://getgrav.org/blog/macos-sierra-apache-upgrade-homebrew

We will proceed by installing PHP 5.6, PHP 7.0, PHP 7.1 and
PHP 7.2 and using a simple script to switch between them
as we need. Up until the end of March 2018, all PHP related
brews were handled by Homebrew/php tab, but that

has been deprecated, so now we use what's available in
the Homebrew/core package. This should be a

better maintained, but is a much less complete, set of
packages.

The first one will take a little bit of time as it has to install
a bunch of brew dependencies. Subsequent PHP versions
will install faster.

Also, you may have the need to tweak configuration
settings of PHP to your needs. A common thing to change
is the memory setting, or the date.timezone

configuration. The php.ini files for each version of

PHP are located in the following directories:

$ brew install php@5.6
$ brew install php@7.0
$ brew install php@7.1
$ brew install php@7.2

You no longer have to unlink each version

between installing PHP versions as they are not linked
by default

* Note

/usr/local/etc/php/5.6/php.ini
/usr/local/etc/php/7.0/php.ini

Let's switch back to the first PHP version now:

Quick test that we're in the correct version:

Apache PHP Setup - Part 1

You have successfully installed your PHP versions, but we
need to tell Apache to use them. You will again need to
edit the /usr/local/etc/httpd/httpd.conf file

/usr/local/etc/php/7.1/php.ini
/usr/local/etc/php/7.2/php.ini

$ brew unlink php@7.2 && brew link --force --overwrite php@5.

At this point, I strongly recommend closing ALL your
terminal tabs and windows. This will mean opening a
new terminal to continue with the next step. This is
strongly recommended because some really strange
path issues can arise with existing terminals (trust me,
I have seen it!).

* Info

php -v

PHP 5.6.35 (cli) (built: Mar 31 2018 20:21:31)
Copyright (c) 1997-2016 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2016 Zend
 with Zend OPcache v7.0.6-dev, Copyright (c) 1999

scroll to the bottom of the LoadModule entries.

If you have been following this guide correctly, the last
entry should be your mod_rewrite module:

Below this add the following libphp modules:

We can only have one module processing PHP at a time,
so for now, so we have left our php@5.6 entry

uncommented while all teh others are commented out.
This will tell Apache to use PHP 5.6 to handle PHP
requests. (We will add the ability to switch PHP versions
later).

Also you must set the Directory Indexes for PHP explicitly,
so search for this block:

and replace it with this:

LoadModule rewrite_module lib/httpd/modules/mod_rewrite.so

LoadModule php5_module /usr/local/opt/php@5.6/lib/httpd/modules/libphp5.so
#LoadModule php7_module /usr/local/opt/php@7.0/lib/httpd/modules/libphp7.so
#LoadModule php7_module /usr/local/opt/php@7.1/lib/httpd/modules/libphp7.so
#LoadModule php7_module /usr/local/opt/php@7.2/lib/httpd/modules/libphp7.so

<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>

Save the file and stop Apache then start again, now that
we have installed PHP:

Validating PHP Installation

The best way to test if PHP is installed and running as
expected is to make use of phpinfo(). This is not
something you want to leave on a production machine,
but it's invaluable in a development environment.

Simply create a file called info.php in your

Sites/ folder you created earlier with this one-

liner.

Point your browser to http://localhost/info.php

and you should see a shiny PHP information page:

<IfModule dir_module>
 DirectoryIndex index.php index.html
</IfModule>

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

$ sudo apachectl -k stop
$ sudo apachectl start

echo "<?php phpinfo();" > ~/Sites/info.php

http://php.net/manual/en/function.phpinfo.php

If you see a similar phpinfo result, congratulations! You
now have Apache and PHP running successfully. You can
test the other PHP versions by commenting the
LoadModule ... php@5.6 ... entry and

uncommenting one of the other ones. Then simply restart
apache and reload the same page.

PHP Switcher Script

We hard-coded Apache to use PHP 5.6, but we really want
to be able to switch between versions. Luckily, some
industrious individuals have already done the hard work
for us and written a very handy little PHP switcher script.

We will install the sphp script into brew's standard

/usr/local/bin :

$ curl -L https://gist.githubusercontent.com/rhukster
$ chmod +x /usr/local/bin/sphp

https://gist.github.com/rhukster/f4c04f1bf59e0b74e335ee5d186a98e2

Check Your Path

Homebrew should have added its preferred
/usr/local/bin and /usr/local/sbin to

your path as part of its installation process. Quickly test
this by typing:

If you don't see this, you might need to add these
manually to your path. Depending on your shell your using,
you may need to add this line to ~/.profile ,

~/.bash_profile , or ~/.zshrc . We will

assume you are using the default bash shell, so add this
line to a your .profile (create it if it doesn't exist)

file at the root of your user directory:

Testing the PHP Switching

After you have completed these steps, you should be able
to switch your PHP version by using the command sphp

 followed by a two digit value for the PHP version:

You will probably have to enter your administrator

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

export PATH=/usr/local/bin:/usr/local/sbin:$PATH

$ sphp 7.0

password, and it should give you some feedback:

Test to see if your Apache is now running PHP 7.0 by again
pointing your browser to http://localhost/info.php

. With a little luck, you should see something like this:

$ sphp 70
Switching to php@7.0
Switching your shell
Unlinking /usr/local/Cellar/php@5.6/5.6.35... 47
Unlinking /usr/local/Cellar/php@7.0/7.0.29... 0
Unlinking /usr/local/Cellar/php@7.1/7.1.16... 0
Unlinking /usr/local/Cellar/php/7.2.4... 0 symlinks removed
Linking /usr/local/Cellar/php@7.0/7.0.29... 47 symlinks created

If you need to have this software first in your PATH instead consider running:
 echo 'export PATH="/usr/local/opt/php@7.0/bin:$PATH"'
 echo 'export PATH="/usr/local/opt/php@7.0/sbin
You will need sudo power from now on
Switching your apache conf
Password:
Restarting apache
All done!

Updating PHP and other Brew Packages

Brew makes it super easy to update PHP and the other
packages you install. The first step is to update Brew so
that it gets a list of available updates:

This will spit out a list of available updates, and any
deleted formulas. To upgrade the packages simply type:

$ brew update

$ brew upgrade

You will need to switch to each of your installed PHP
versions and run update again to get updates for each

* Info

Activating Specific/Latest PHP Versions

Due to the way our PHP linking is set up, only one version
of PHP is linked at a time, only the current active version
of PHP will be updated to the latest version. You can see
the current active version by typing:

And you can see the specific versions of PHP available by
typing:

OK, that wraps up Part 1 of this 3 part series You now have
a fully functional Apache 2.4 installation with a quick-and-
easy way to toggle between PHP 5.6, 7.0, 7.1 and 7.2. Check
out Part 2 to find out how to setup your environment with
MySQL, Virtual Hosts, APC caching, YAML, and Xdebug.
Also take a gander at Part 3 to find out how to setup SSL
for your Apache Virtual Hosts.

PHP version and ensure you are running the version of
PHP you intend.

$ php -v

$ brew info php@7.0
php@7.0: stable 7.0.29 (bottled) [keg-only]
General-purpose scripting language
...

https://getgrav.org/blog/macos-sierra-apache-mysql-vhost-apc
https://getgrav.org/blog/macos-sierra-apache-ssl

∠ ∠ ∠ ∠

RELATED POSTS

journal

14
NOV

Picking a

Development

Strategy

So, you’ve decided to
get Grav and build a
site with it.

 ANDY MILLER

+ 6 MINS

EC2 SERVERPILOT VPS

tutorial

15
DEC

Fast Free Grav

Development

I had originally
planned on penning a
blog post about how
easy it is to setup and

 ANDY MILLER

+ 9 MINS

GITHUB

tutorial

17
NOV

Grav

Development

with GitHub -

Part 2

In this second part of

 ANDY MILLER

+ 10 MINS

Never miss a thing, sign up to the Grav mailing list

email address

∠
DOWNLOAD GRAV

https://getgrav.org/blog/grav-1.5-released
https://getgrav.org/blog/macos-sierra-apache-mysql-vhost-apc
https://getgrav.org/blog/rockettheme-spring-sale-2018
https://getgrav.org/blog/grav-beta-released
https://getgrav.org/blog/development-strategy
https://getgrav.org/blog/development-strategy
https://getgrav.org/blog/fast-free-grav-development
https://getgrav.org/blog/fast-free-grav-development
https://getgrav.org/blog/developing-with-github-part-2
https://getgrav.org/blog/developing-with-github-part-2
https://getgrav.org/blog/macos-sierra-apache-multiple-php-versions#
https://getgrav.org/downloads

SUBSCRIBE

Crazy Fast VPS Hosting Sponsored by Linode - managed by ServerPilot - monitoring by

Pingometer

Copyright @2018 - Grav CMS - All rights reserved - Grav is released under the MIT license

Grav was - with ♥ by RocketTheme

CDN provided by . MaxCDN

Designed by Eduardo Santos

Contact the Grav Team

About Grav

Grav Media Information

Grav News Feed

https://www.linode.com/?r=300c424631b602daaa0ecef22912c1c26c81e3af
https://www.serverpilot.io/?refcode=fb58eb54aecc
https://pingometer.com/
https://github.com/getgrav/grav/blob/develop/LICENSE.txt
http://getgrav.org/
http://www.rockettheme.com/
http://maxcdn.com/
https://dribbble.com/eduardo
mailto:contact@getgrav.org
https://getgrav.org/about
https://getgrav.org/media
https://getgrav.org/blog.atom

