
Filtering
collections
When requesting a collection it's pobbile to filter the output. The filtering
system is quite flexible and allows to contstruct complex queries. The
module translates your query to an actual WHERE clause that is added
to the database query that is executed to get your collection. In that
sense it's best to see the jsonapi filtering system as a query builder. You
will find some basic and advanced examples below.

Basic
setup
and
notation
To add a filter to a query you add an array to the querystring of your
request. There are two available notations. There's a common notation
and a short version. The short notation allows you to add a single value
filter to a single field. Below is the most basic example in both notations.

Array
Keys
in
italics
are
keywords
required
by
jsonapi
module

Short notation

GET	drupal8.dev/api/node/article?_format=api_json
&filter[nid][value]=1

Common notation

GET	drupal8.dev/api/node/article?_format=api_json
&filter[nid-filter][condition][field]=nid
&filter[nid-filter][condition][value]=1

As you can see for really basic requests it's easier to add a short notated

filter. If you need more functionality you will probably use the common
notation

The common filter notation is an array where each key can be a different
filter. To allow grouping the filters require an ID (filter[filter-id]). This ID
can be numeric or any string. For demonstration I'll use an appropriate
string as filter id.

Filter
conditions

When adding a filter condition you can add the following parameters

field: The field name, or nested field name (See example 2).
value: The value as a single string / integer or an array
operator: The operator you want this filter to use. (=, <, >, <>, IN,
NOT IN, BETWEEN) (see example 3)
group: The group this filter is a child of. (see example 4)

Grouping
filters

It's possible to add multiple filters and create complex groups with them
as you'd be able to do with a database query.

When adding a filter you can add a group key and a conjunction key. The
conjunction key defines wether the child filters of this group will we
combined by AND or by OR.

filter[filter-id][group][conjunction] = AND|OR

It's also possible to add a group to another group. filter[filter-id][group]
[group] = "parent-group-id"

For more see example 4 and 5

Examples

1.
Only
get
nodes
that
are
published

A very common scenario is to only load the nodes that are published.
This is a very easy filter to add.

SHORT
filter[status][value]:1
	
NORMAL
filter[status-filter][condition][field]:status
filter[status-filter][condition][value]:1

2.
Nested
Filters:
Get
nodes
created
by
user
admin

It's possible to filter on fields from referenced entities like the user,
taxonomy fields or any entity reference field. You can do this easily but
just using the the following notation. reference_field.nested_field. In this
example the reference field is uid for the user and name which is a field
of the user entity.

SHORT
filter[uid.name][value]:admin
	
NORMAL
filter[name-filter][condition][field]:uid.name
filter[name-filter][condition][value]:admin

3.
Filtering
with
arrays:
Get
nodes
created
by
users
[admin,
john].

You can give multiple values to a filter for it to search in. Next to the field
and value keys you can add an operator to your condition. Usually it's
"=" but you can also use "IN", "NOT IN", ">", "<", "<>", BETWEEN".

For this example we're going to use the IN operator. Not that I added
two square brackets behind the value to make it into an array.

NORMAL
filter[name-filter][condition][field]:uid.name
filter[name-filter][condition][operator]:IN
filter[name-filter][condition][value][]:admin
filter[name-filter][condition][value][]:john

4.
Grouping
filters:
Get
nodes
that
are
published
and
create
by
admin.

Now let's combine some of the examples above and create the following
scenario. WHERE user.name = admin AND node.status = 1;

filter[and-group][group][conjunction]:AND
filter[name-filter][condition][field]:uid.name
filter[name-filter][condition][value]:admin
filter[name-filter][condition][group]:and-group
filter[status-filter][condition][field]:status
filter[status-filter][condition][field]:1
filter[status-filter][condition][group]:and-group

You don't really have to add the and-group but I find that a bit easier
usually.

5.
Grouping
grouped
filters:
Get
nodes
that
are
promoted
or
sticky
and
creatd
by
admin

Like mentioned in the grouping section, you can put groups into other
groups. WHERE (user.name = admin) AND (node.sticky = 1 OR
node.promoted = 1)

To do this we put sticky and promoted into a group with conjuction OR.
Create a group with conjunction AND and put the admin filter, and the
promoted/sticky OR group into that.

#	Create	an	AND	and	an	OR	GROUP
filter[and-group][group][conjunction]:AND
filter[or-group][group][conjunction]:	OR
	
#	Put	the	OR	group	into	the	AND	GROUP
filter[or-group][group][group]:	and-group
	
#	Create	the	admin	filter	and	put	it	in	the	AND	GROUP
filter[admin-filter][condition][field]:uid.name
filter[admin-filter][condition][value]:admin
filter[admin-filter][condition][group]:and-group
	
#	Create	the	sticky	filter	and	put	it	in	the	OR	GROUP
filter[sticky-filter][condition][field]:sticky
filter[sticky-filter][condition][field]:1
filter[sticky-filter][condition][group]:sticky-filter
	
#	Create	the	promoted	filter	and	put	it	in	the	OR	GROUP
filter[promote-filter][condition][field]:promote
filter[promote-filter][condition][field]:1
filter[promote-filter][condition][group]:and-group

