
Recommended Core Security Improvements
By Jesse Crawford for the Drupal Security Team

12/15/2007

In 2007 there were a total of 33 security vulnerabilities identified handled the Drupal Security Team, 4 
in the Drupal core and 29 in contributed modules. Of these, 19 were a result of input that was not 
sanitized properly, resulting in vulnerability to cross site scripting and, in some cases, arbitrary code 
execution and SQL insertion. Other errors included unprotected utilities and sample files, programs that 
did not adequately protect secure items, and design flaws resulting in back door authorizations. The 
Security Team worked with developers to resolve these security vulnerabilities, providing updated 
versions and patches.

Input Sanitation

Over half of these vulnerabilities were due to improperly sanitized and validated input. One of the main 
culprits here was not using the Forms API. My first recommendation is that contributed project 
developers be strongly encouraged to use the API, and that core modules should use the API whenever 
possible. Because the API includes security validation, use of it should greatly reduce the occurrence of 
vulnerabilities to cross-site scripting and SQL injection.

Another important point is education – although it is already being done, a further effort should be 
made to show developers the risks associated with improperly sanitized input and how to easily prevent 
it by using the forms API. Developers also seem unsure of when and what to use when it comes to 
input sanitation – Although the documentation at http://drupal.org/writing-secure-code seems 
extensive, Developers continue to make input handling handling errors. It may be helpful to include 
more examples for XSS protection, and further information on the kinds of risks XSS includes.

Just as important as sanitation of input is sanitation of output. It is important that developers use 
provided functions to ensure that data output to the user is free of unauthorized scripts and potentially 
harmful code. Developers should be sure to use the appropriate filter function (often just check_plain) 

2007 vulnerabilities by type

XSS
CSRF
Other unfiltered 
input/output

Authorization 
Errors
Other

http://drupal.org/writing-secure-code


to verify that output is clean.

Security-Mindedness

The brunt of the other vulnerabilities were simply cases of people not developing in a security-minded 
fashion. A prominent example of this is SA-2007-009, a Highly Critical vulnerability caused simply by 
a module that included unprotected example scripts capable of modifying the file system. This risk is 
easy to mitigate – the easiest method is simply to remove the example scripts and provide them as a 
separate download for those that would like to see them. Alternatively, they could have included 
prominent warnings to the user that the scripts should be protected; or the scripts could be modified to 
use Drupal authentication. However, these scripts slipped through.

The best solution to this is education. Developers should be reminded (perhaps repeatedly) that security 
is a primary component of a successful project, not an afterthought. Developing with security in mind 
will reduce almost all vulnerabilities, and make it easier to resolve those that slip through. To this end, 
it may be helpful to release further documentation for developers covering security principals.

Although this has not been as much of a problem for the core, it still bears importance to core 
developers. SA-2007-025 is a vulnerability very similar to SA-2007-09 in the Drupal core. It was found 
that the Drupal installation scripts, which remained after installation, would run when Drupal could not 
connect to it's database, allowing any anonymous user to configure Drupal to use a different database. 
This risk is also easy to patch: simply instruct the user to remove the installer once installation is 
complete, or have it automatically deleted once installation is verified. However, this error passed 
unnoticed and became a Highly Critical security vulnerability.

It is important that developers also focus on catching the most obvious vulnerabilities – sometimes 
developers get too caught up in guarding against small, complex vulnerabilities, and they don't catch 
simpler and sometimes very obvious risks.

Authorization API

A good number of vulnerabilities were caused by modules that did not always check the users 
authorization to access a resource. It seems that there may be a need for an easier to use API to 
centralize security vulnerability, specifically, a new API for user authorization management. Such an 
API should include the ability for modules to expand the API; for example, the ability for modules to 
specify a script returning true or false that the API should always execute as part of determining if a 
user is authorized for a resource. That way modules can have their own authorization systems that other 
modules can easily honor. Implementation of such a system would greatly reduce the number of 
authorization bypass vulnerabilities.

In conclusion: Remind developers that security is a primary component of good software, develop APIs 
that make it easy to develop secure applications, and continue to make security a key part of core and 
third party development.


	Recommended Core Security Improvements

