
Apache Solr Popularity Technical Details

Intended audience:

- Developers looking for low-level details in order to make modifications or improvements to the popularity algorithm.

Scientists in information retrieval that are interested in collaborating on a paper for peer review are encouraged to contact me via a private

message (contact info at bottom). This work is novel research on increasing the performance of enterprise search engines.

Preliminaries

It is recommended to be familiar with the Apache Solr Popularity Configurations document prior to reading this paper, as it will assume you are

familiar with terms discussed there. A link to the document can be obtained in the Document Section of the Apache Solr Popularity project

page.

Intro

The purpose of this project is to incorporate the popularity of a node into the search results. The importance of this can be illustrated by a

simple example. Say a user is searching on a university website for a webpage on a particular biology course. After submitting the search query,

Solr returns two pages in the search results, with Page A having a score of 0.74 and Page B having a score of 0.72. Without additional

information, Solr will place Page A first, followed by Page B. For illustration purposes, say Page A has a monthly hit count (page views) of 7 and

Page B has a monthly hit count of 547. Considering the scores are very similar (Page A: 0.74 vs. Page B: 0.72), yet Page B is in much greater

demand, it more likely that user is more interested in Page B instead of Page A. Therefore, Page B should be ranked higher than Page A;

however, this is not what happens.

This simple example happens all too often when we search for a specific page on websites, particularly private ones, and our search query

returns search results listing webpages that few people would be interested in. Public search engines can use algorithms such as page rank to

remove less useful pages; however, algorithms such as page rank are much less useful for enterprise search engines. To make up for this

deficient, the popularity of a node can be used. Unfortunately, the Apache Solr Search Integration module does not collect popularity

information for Solr, and thus, Solr cannot use this highly valuable information to rank the nodes more appropriately. This is the problem that

the Apache Solr Popularity module addresses and this paper’s purpose is to detail the algorithms used to perform this function effectively.

Before we can use popularity to re-rank the pages more effectively, a model of popularity must be derived, as detailed in the Popularity

Model section. Next, popularity must be transformed into a form that can be used effectively for ranking; this is detailed in the Ranking Modifier

section. Finally, the Popularity Algorithm section discusses the algorithm developed.

Popularity Model

At the most fundamental level, popularity is based on the hit count for each node. Thus, it is necessary to track the hit counts
 for each node

 at time and calculate the respective popularity
 at each time interval (e.g., at each cron update). The simplest method of calculating

the popularity is to set the popularity
 to the hit count

 (i.e.

). A major problem with this method is that it does not take into

consideration the amount of time the node has been tracked for. A node may have a high hit count simply because it has been tracked for a

longer time and not necessarily because it is popular. To remedy this, the frequency of the hit count can be used, which provides an alternative

definition for the popularity (i.e.

).

The frequency can vary greatly from one website to another. In order to use values that are more consistent between websites, the

frequency
 can be normalized by the frequency of the node with the greatest frequency

 , which scales the node popularity to between 0

and 1. To improve user readability, it is multiplied by 100 to rescale it from 0 to 100. Formally, the popularity
 over the time interval can

be defined as

 (

) (1)

Factoring out the time component from the frequency gives

 (

) (

) (2)

which can be reduced to a normalized version of the hit count

 (

) (3)

Eq. (3) provides that base for our calculations of popularity.

Next, at each popularity update, the values may vary greatly, simply because of the partially random nature of user browsing behavior. To

remove this random noise, it is useful to perform some form of filtering (e.g., averaging). The traditional method to calculate an average is to

sum up all values and divide by the total number of values (i.e. batch average). However, this is problematic for modeling popularity because

the time interval between popularity updates may not be constant. Therefore, it is necessary to perform a weighted average based on the

size of the time interval .

Unfortunately, calculating batch averages at each update is both computationally inefficient and inefficient on memory. Alternatively, an

iterative average can be used. The iterative average has the advantage that rather than having to keep track of every value calculated, only the

previous average is required, which is beneficial since it greatly reduces the number of calculations at each update and greatly reduces memory

requirements since recording the complete history is not required.

In the most basic form, the iterative average of each node as it applies to popularity can be calculated by

 (

)

 (

)

 (4)

where is the popularity at the current time , is the popularity at the previous update, and is the popularity since the last update.

Furthermore,
 is the current (total) time that the node has been tracked, and is the time interval since last update. Specifically, the

relation between the current time
 , the previous time

 , and the time interval is defined by

 (5)

The problem with this method of calculating popularity using Eq. (4) is that if the node was in demand in the past but is no longer in demand

now, it may be calculated as being popular despite being currently viewed infrequently. Inversely, if a node had low demand in the past, but

changes were made to make it more in demand, it may still be calculated as unpopular. To avoid this, it is beneficial to have the past popularity

values decay, which will cause newer popularity calculations to hold more weight.

One solution to allow the past to decay is to have the time based on function of the previous time, which compresses (reduces) larger

times. The first step is to redefine time from Eq. (5) to being a function of the previous time

 (

) (
) (6)

and

 () (7)

where is the (unadjusted) time at the current time step, is the (unadjusted) time at the previous time step, and is the (unadjusted)

time step interval.

Substituting Eq. (6) and Eq. (7) into Eq. (4) provides the popularity
 for node

 (

 ()

 (
)

)
 (

 (
) ()

 (
)

)
 (8)

Starting with the following identity and rearranging

 (9)

 (

 (
)

 (
)

)
 (10)

 (

 (
) (() ())

 (
)

)
 (11)

 (

 ()

 (
)

)
 (

 (
) ()

 (
)

)
 (12)

Eq. (9) can be put in the form

(
 (

) ()

 (
)

)

 (
 ()

 (
)

)
 (13)

Substituting Eq. (13) into Eq. (8)

 (

 ()

 (
)

)

 (
 ()

 (
)

)
 (14)

and rearranging provides the popularity update function

 [
 ()

 (
)

] [

] (15)

As clarified by the following, Eq. (15) can be seen as a mathematical filter

 [
 ()

 (
)

]
⏞

 [

]

⏞

⏟

 (16)

where the new popularity
 is obtained iteratively by taking the previous popularity

 and adding a correction to it. The correction is

calculated by multiplying a gain function by the residual, where the residual is the difference between the old popularity
 and the recent

popularity
 , and the gain function determines how much of the residual to include into the estimated new popularity

 . The has a

value between 0 and 1.

The constraint for the gain function is that it outputs a value between 0 and 1 and the constraint for the decay function is that when the

values are small, the output equals the input (i.e.

(())

())

The simplest decay function that can be used would be a simple linear function (i.e. ()). However, this does not allow older

popularities to decay. Alternatively, if we compress (reduce) larger values of , yet do not compress smaller values of , then it will have the

same effect as the past decaying, which results in newer popularity values holding more weight. An effective way to model this effect is to use a

variant of the logistic function

 () (

(

)
) (17)

where is the time window. As approaches , then () becomes close to 1. However, only as gets very large does it equal 1 (i.e.

 ()).

Rearranging Eq. (17) gives

 () (

(

)

(

)
) (18)

By isolating the gain function from Eq. (16)

 [
 ()

 (
)

] (19)

we can substitute Eq. (18) into Eq. (19) to obtain the logistic gain

 [(

(

)

(

)
) (

(

)

(

)
)] (20)

Substituting Eq. (20) back into the update function

 [

], we obtain the complete popularity update function

 [(

(

)

(

)
) (

(

)

(

)
)]

⏞

 [

]
(21)

Eq. (21) allows the popularity to be calculated iteratively, weighs the influence of the update proportional to the amount of time that has

passed, smooths out noise, and decays the past to positively bias more recent calculations. However, it does not weigh times with high server

load greater than times of low server load.

There is an advantage to weighing periods of high total hit counts greater than periods of low total hit counts because node popularity

calculations during the former will more closely resemble the individual demands for the node by more users than the latter. In order to bias

times of high total hit count times, the time step interval since the last update can be redefined as the count-adjusted time interval. Specifically,

 ̅
 (22)

where is the frequency of hit counts for all nodes since the last update, and ̅ is the average daily frequency of hit counts for all nodes. By

factoring out the time component Eq. (22) becomes

 ̅
 (23)

where is the total number of hit counts for all nodes since the last update, and ̅ is the average total hit counts for all nodes. To prevent all of

the equations from being unnecessarily redefined, for simplicity, the count-adjusted time interval will be denoted by and the true time

interval will be denoted by .

The average hit count ̅ can be calculated using a similar filter as used for calculating popularity

 ̅ ̅ [̅] (24)

which can be expanded into

 ̅ ̅ [(

(

)

(

)
) (

(

)

(

)
)] [̅] (25)

where is the total time the module has been enabled for, and the constant is defined by

 () (26)

where is a value greater than 1 (day) to prevent from dropping too low. This ensures that the average rate remains accurate and is not

overly influenced by sub-daily fluctuations in hit counts.

Note: when updating the time at the end of each update, we use the true time
 as calculated by

 (27)

Furthermore, at the start of each update, the time step is moved forward

 (28)

However, the trivial step of Eq. (28) is solely presented for formal accuracy.

Ranking Modifier Model

Popularity provides a good indication of the demand for a node; however, it is not directly useful as a variable to modify Apache Solr’s ranking

scores. To do this, we define a new variable, the ranking modifier
 for a node , which is multiplied against Solr’s ranking scores

 for query

 to create the popularity modified ranking score ̂
 . Formally, the popularity modified ranking score is obtained by

 ̂

 (29)

The modified ranking score ̂
 from Eq. (29) is what Solr uses to rank the nodes from a search query. Since it is used for ranking only, the

specific absolute values are not important, but rather, it is the relative values that determine the order.

The ranking modifier
 is based off the popularity value and is molded into a form that will be useful for search. Specifically, the ranking

modifier
 is defined as

 (

) (30)

where is the popularity influence coefficient, is the low-popularity influence constant, is the normalization function,
 is the popularity

of the node that currently has the largest popularity, and
 is the popularity of the node that currently has the lowest popularity.

The popularity influence coefficient is the amount that node popularity scores influence the ranking modifier. The low-popularity

influence constant limits the decrease in the value of the ranking modifier for nodes with a low popularity, which prevents unpopular nodes

from being difficult to find in the search results. The normalization function scales and normalizes the popularity values, and determines how

much the popularity of highly popular nodes is compressed (reduced in value). This prevents very popular nodes from dominating the search

results.

There are three types of normalization/compression functions: linear, square root, and logarithmic. Linear normalization is defined as

 (

) (

) (31)

and provides no compression, which does not reduce the influence of overly popular nodes. Square root normalization is defined as

 (

) (

)

 (32)

and provides a moderate amount of compression, which partially reduces the influence of overly popular nodes. Finally, the logarithmic

normalization is defined as

 (

)

 (

)

 (

)
 (33)

and provides a high degree of compression, which causes a greater reduction of influence of overly popular nodes.

Popularity Algorithm

Using the defined equations, an algorithm can now be detailed. Page views are continuously recorded, and at each cron update, the following is

executed:

1. Calculate the recent popularity
 using Eq. (3)

2. Calculate the average hit count ̅ using Eq. (25) and Eq. (26)

3. Calculate the count-adjusted time interval using Eq. (23)

4. Calculate the count-adjusted current time

5. Calculate the new popularity
 using Eq. (21)

6. Calculate using either Eq. (31), Eq. (32), or Eq. (33)

7. Calculate the ranking modifier
 using Eq. (30)

8. Calculate the true current time
 using Eq. (27)

9. Store and update the true current time
 , the new popularity

 , and the ranking modifier
 in the database

10. Repeat Steps 1-9 for the remaining nodes

11. Send ranking modifiers to Solr and reload Solr’s cache

Using Steps 1-11, the popularity and ranking modifiers are calculated and used to re-rank nodes by including the demand for a node to be

included into Solr’s ranking.

When properly tuned, this module can greatly improve the relevancy of a search.

Credits

Developer:

 Jonathan Gagne (jongagne)
 http://drupal.org/user/2409764

This project was funded by:

 OPIN Software
 http://www.opin.ca/

