
Apache Solr Popularity Technical Details 

Intended audience:   

- Developers looking for low-level details in order to make modifications or improvements to the popularity algorithm. 

Scientists in information retrieval that are interested in collaborating on a paper for peer review are encouraged to contact me via a private 

message (contact info at bottom).  This work is novel research on increasing the performance of enterprise search engines. 

Preliminaries 

It is recommended to be familiar with the Apache Solr Popularity Configurations document prior to reading this paper, as it will assume you are 

familiar with terms discussed there.  A link to the document can be obtained in the Document Section of the Apache Solr Popularity project 

page. 

Intro 

The purpose of this project is to incorporate the popularity of a node into the search results.  The importance of this can be illustrated by a 

simple example.  Say a user is searching on a university website for a webpage on a particular biology course.  After submitting the search query, 

Solr returns two pages in the search results, with Page A having a score of 0.74 and Page B having a score of 0.72.  Without additional 

information, Solr will place Page A first, followed by Page B.  For illustration purposes, say Page A has a monthly hit count (page views) of 7 and 

Page B has a monthly hit count of 547.  Considering the scores are very similar (Page A: 0.74 vs. Page B: 0.72), yet Page B is in much greater 

demand, it more likely that user is more interested in Page B instead of Page A.  Therefore, Page B should be ranked higher than Page A; 

however, this is not what happens.   

This simple example happens all too often when we search for a specific page on websites, particularly private ones, and our search query 

returns search results listing webpages that few people would be interested in.  Public search engines can use algorithms such as page rank to 

remove less useful pages; however, algorithms such as page rank are much less useful for enterprise search engines.  To make up for this 

deficient, the popularity of a node can be used.  Unfortunately, the Apache Solr Search Integration module does not collect popularity 

information for Solr, and thus, Solr cannot use this highly valuable information to rank the nodes more appropriately.  This is the problem that 

the Apache Solr Popularity module addresses and this paper’s purpose is to detail the algorithms used to perform this function effectively. 



Before we can use popularity to re-rank the pages more effectively, a model of popularity must be derived, as detailed in the Popularity 

Model section.  Next, popularity must be transformed into a form that can be used effectively for ranking; this is detailed in the Ranking Modifier 

section.  Finally, the Popularity Algorithm section discusses the algorithm developed. 

Popularity Model 

At the most fundamental level, popularity is based on the hit count for each node.  Thus, it is necessary to track the hit counts   
  for each node 

  at time   and calculate the respective popularity   
  at each time interval    (e.g., at each cron update).  The simplest method of calculating 

the popularity is to set the popularity   
  to the hit count   

  (i.e.   
    

 ).  A major problem with this method is that it does not take into 

consideration the amount of time   the node has been tracked for.  A node may have a high hit count simply because it has been tracked for a 

longer time and not necessarily because it is popular.  To remedy this, the frequency of the hit count can be used, which provides an alternative 

definition for the popularity (i.e.   
    

 ).   

The frequency can vary greatly from one website to another.  In order to use values that are more consistent between websites, the 

frequency   
  can be normalized by the frequency of the node with the greatest frequency   

   , which scales the node popularity to between 0 

and 1.  To improve user readability, it is multiplied by 100 to rescale it from 0 to 100.  Formally, the popularity    
  over the time interval    can 

be defined as 
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Factoring out the time component from the frequency gives 
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which can be reduced to a normalized version of the hit count 
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Eq. (3) provides that base for our calculations of popularity. 

Next, at each popularity update, the values may vary greatly, simply because of the partially random nature of user browsing behavior.  To 

remove this random noise, it is useful to perform some form of filtering (e.g., averaging).  The traditional method to calculate an average is to 

sum up all values and divide by the total number of values (i.e. batch average).  However, this is problematic for modeling popularity because 



the time interval    between popularity updates may not be constant.  Therefore, it is necessary to perform a weighted average based on the 

size of the time interval   .   

Unfortunately, calculating batch averages at each update is both computationally inefficient and inefficient on memory.  Alternatively, an 

iterative average can be used.  The iterative average has the advantage that rather than having to keep track of every value calculated, only the 

previous average is required, which is beneficial since it greatly reduces the number of calculations at each update and greatly reduces memory 

requirements since recording the complete history is not required. 

In the most basic form, the iterative average of each node as it applies to popularity can be calculated by 
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where    is the popularity at the current time  ,      is the popularity at the previous update, and     is the popularity since the last update.  

Furthermore,   
  is the current (total) time that the node   has been tracked, and    is the time interval since last update.  Specifically, the 

relation between the current time   
 , the previous time     

 , and the time interval    is defined by 
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The problem with this method of calculating popularity using Eq. (4) is that if the node was in demand in the past but is no longer in demand 

now, it may be calculated as being popular despite being currently viewed infrequently.  Inversely, if a node had low demand in the past, but 

changes were made to make it more in demand, it may still be calculated as unpopular.  To avoid this, it is beneficial to have the past popularity 

values decay, which will cause newer popularity calculations to hold more weight. 

One solution to allow the past to decay is to have the time based on function   of the previous time, which compresses (reduces) larger 

times.  The first step is to redefine time from Eq. (5) to being a function of the previous time 
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and 
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where    is the (unadjusted) time at the current time step,      is the (unadjusted) time at the previous time step, and    is the (unadjusted) 

time step interval. 

Substituting Eq. (6) and Eq. (7) into Eq. (4) provides the popularity   
  for node    
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Starting with the following identity and rearranging 
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Eq. (9) can be put in the form 
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Substituting Eq. (13) into Eq. (8) 

  
  (

 (  )

 (    
    )

)   
      

  (
 (  )

 (    
    )

)    
  (14) 

and rearranging provides the popularity update function 
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As clarified by the following, Eq. (15) can be seen as a mathematical filter 
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where the new popularity   
  is obtained iteratively by taking the previous popularity     

  and adding a correction to it.  The correction is 

calculated by multiplying a gain function   by the residual, where the residual is the difference between the old popularity     
  and the recent 



popularity    
 , and the gain function   determines how much of the residual to include into the estimated new popularity   

 .  The   has a 

value between 0 and 1. 

The constraint for the gain function   is that it outputs a value between 0 and 1 and the constraint for the decay function   is that when the 

values are small, the output equals the input (i.e.    
   
( ( ))     

   
( )) 

The simplest decay function   that can be used would be a simple linear function (i.e.  ( )   ).  However, this does not allow older 

popularities to decay.  Alternatively, if we compress (reduce) larger values of  , yet do not compress smaller values of  , then it will have the 

same effect as the past decaying, which results in newer popularity values holding more weight.  An effective way to model this effect is to use a 

variant of the logistic function 
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where    is the time window.  As   approaches   , then  (    ) becomes close to 1.  However, only as   gets very large does it equal 1 (i.e. 
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Rearranging Eq. (17) gives 
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By isolating the gain function   from Eq. (16) 
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we can substitute Eq. (18) into Eq. (19) to obtain the logistic gain   
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Substituting Eq. (20) back into the update function   
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 ], we obtain the complete popularity update function 
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Eq. (21) allows the popularity to be calculated iteratively, weighs the influence of the update proportional to the amount of time that has 

passed, smooths out noise, and decays the past to positively bias more recent calculations.  However, it does not weigh times with high server 

load greater than times of low server load. 

There is an advantage to weighing periods of high total hit counts greater than periods of low total hit counts because node popularity 

calculations during the former will more closely resemble the individual demands for the node by more users than the latter.  In order to bias 

times of high total hit count times, the time step interval since the last update can be redefined as the count-adjusted time interval.  Specifically,  
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where    is the frequency of hit counts for all nodes since the last update, and   ̅ is the average daily frequency of hit counts for all nodes.  By 

factoring out the time component Eq. (22) becomes 
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where    is the total number of hit counts for all nodes since the last update, and   ̅ is the average total hit counts for all nodes.  To prevent all of 

the equations from being unnecessarily redefined, for simplicity, the count-adjusted time interval will be denoted by    and the true time 

interval will be denoted by   . 

The average hit count   ̅ can be calculated using a similar filter as used for calculating popularity 
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which can be expanded into 
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where    is the total time the module has been enabled for, and the constant    is defined by 



      (     ) (26) 

where    is a value greater than 1 (day) to prevent    from dropping too low.  This ensures that the average rate remains accurate and is not 

overly influenced by sub-daily fluctuations in hit counts. 

Note: when updating the time at the end of each update, we use the true time   
  as calculated by 
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Furthermore, at the start of each update, the time step is moved forward 
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However, the trivial step of Eq. (28) is solely presented for formal accuracy. 

Ranking Modifier Model 

Popularity provides a good indication of the demand for a node; however, it is not directly useful as a variable to modify Apache Solr’s ranking 

scores.  To do this, we define a new variable, the ranking modifier   
  for a node  , which is multiplied against Solr’s ranking scores   

  for query 

  to create the popularity modified ranking score  ̂ 
 .  Formally, the popularity modified ranking score is obtained by 

 ̂ 
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The modified ranking score  ̂ 
  from Eq. (29) is what Solr uses to rank the nodes from a search query.  Since it is used for ranking only, the 

specific absolute values are not important, but rather, it is the relative values that determine the order. 

The ranking modifier   
  is based off the popularity value and is molded into a form that will be useful for search.  Specifically, the ranking 

modifier   
  is defined as 
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where   is the popularity influence coefficient,   is the low-popularity influence constant,   is the normalization function,   
    is the popularity 

of the node that currently has the largest popularity, and   
    is the popularity of the node that currently has the lowest popularity.   

The popularity influence coefficient   is the amount that node popularity scores influence the ranking modifier.  The low-popularity 

influence constant   limits the decrease in the value of the ranking modifier for nodes with a low popularity, which prevents unpopular nodes 

from being difficult to find in the search results.  The normalization function   scales and normalizes the popularity values, and determines how 

much the popularity of highly popular nodes is compressed (reduced in value).  This prevents very popular nodes from dominating the search 

results. 



There are three types of normalization/compression functions: linear, square root, and logarithmic.  Linear normalization is defined as 
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and provides no compression, which does not reduce the influence of overly popular nodes.  Square root normalization is defined as 
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and provides a moderate amount of compression, which partially reduces the influence of overly popular nodes.  Finally, the logarithmic 

normalization is defined as  
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and provides a high degree of compression, which causes a greater reduction of influence of overly popular nodes. 

Popularity Algorithm 

Using the defined equations, an algorithm can now be detailed.  Page views are continuously recorded, and at each cron update, the following is 

executed: 

1. Calculate the recent popularity    
  using Eq. (3) 

2. Calculate the average hit count   ̅ using Eq. (25) and Eq. (26) 

3. Calculate the count-adjusted time interval    using Eq. (23) 

4. Calculate the count-adjusted current time   
      

     

5. Calculate the new popularity   
  using Eq. (21) 

6. Calculate   using either Eq. (31), Eq. (32), or Eq. (33) 

7. Calculate the ranking modifier   
  using Eq. (30) 

8. Calculate the true current time   
  using Eq. (27)  

9. Store and update the true current time   
 , the new popularity   

 , and the ranking modifier   
  in the database 

10. Repeat Steps 1-9 for the remaining nodes 

11. Send ranking modifiers to Solr and reload Solr’s cache 



Using Steps 1-11, the popularity and ranking modifiers are calculated and used to re-rank nodes by including the demand for a node to be 

included into Solr’s ranking.   

 

When properly tuned, this module can greatly improve the relevancy of a search. 
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